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ABSTRACT

The purpose of this thesis is to show the capability

of strong viscous/inviscid interaction methods to predict

airfoil flows at low Reynolds numbers. Cebecils interactive

program was applied to the Wortmann-Althaus FX 63-137

airfoil and the results were compared with the available

experimental data. It was found that the boundary layer 6

transition model has an important influence on the

predictive capability of viscous/inviscid interaction 4

methods.
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I. INTRODUCTION

There are many theories to aid the airfoil design

process by computational methods, because of the desire to

reduce the number and cost of wind tunnel tests. A still

l.argely unresolved question is the problem of flow sepa-

ration. Because the classical boundary layer approximation

cannot be applied to separated flow calculations, engineers

have tried to overcome this limitation by developing

viscous/inviscid interaction approaches or to develop direct

solutions of the Navier-Stokes equation.

The purpose of this thesis is to demonstrate the

capability of the viscous/inviscid interaction method by

applying Cebeci's interactive computer program to a single

j'rfoil (F/ 63-137) at three low Reynolds numbers and by

comparing the results with experimental data.

Chapter II explains the boundary layer theory. The

boundary layer equations are derived and the turbulence

models are introduced. Also, this chapter includes the

prediction of transition boundary layer calculations and

flow separation.

Chapter III introduces the interaction methods.

Three weak interaction methods are explained briefly and the

10
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simultaneous method is presented as a strong interaction

method.

Chapter IV describes Cebeci's interactive computer

program. Input/Output data description and JCL files are

included. Also, the results of the application of Cebeci's

program are discussed.

I-

,I

11l

-~ . *~ % % * ~ . .- ~ . **5 .,- --.- .nu
- flr .c S~ a ~ ~ lt~ >ta~s & n l



II. BOUNDARY LAYER THEORY

A. DERIVATION OF BOUNDARY LAYER EQUATIONS

Generally, the thickness of the boundary layer increases

with viscosity, or it is possible to state that it decreases

with viscosity, or it is possible to state that it decreases

is the Reynolds number increases. From exact solations of

the Navier-Stokes equations, it was seen that the

boundary-layer thickness (4) is proportional to the square

root of kinematic viscosity (d);

where x is the distance from the leading edge of a f'at

plate. Using the local Reynolds number

Re = U x/Q, f(x) - 1

x Re.

For simplicity, assume a two-dimensional, steady

constant - property flow without body forces and leave the

stresses unspecified so that the results apply to laninar or

turbulent flow. If simplifications are to be introduced

into Navier-Stokes equations, it must be assumed that the

boundary layer thickness is very small compared with a

representative linear dimension (L) of the body, ie. dr<- L.

In this way, the solutions obtained from the boundary layer

12
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equations are asymptotic and apply to very large Reynolds

numbers.

From the Navier-Stokes equations,

x-direction: - 1 oP + 1 36-xx + 1 D6-xy = u )u + v _u

,o x 3P ax y ax y

y-direction: - 1 6P + 1 a6-y_ + I l 6"xy = u av + v _v
p0 ay p0 y /p x 6 x ay

and the continuity equation is:

6u + 3 v = 0 (2.3)
ax y

Inserting the "typical" (order-of-magnitude) values, replace

the dependent variables as follows;

u , ue au ue

3y a Jx .

Then Eq. (2.1) can be expressed as

-1 p + 1 36 xx f 1 al 6 u Lu + v )u
/0 ax /0 ax /0 D y ax a.1a I

6-xx IP xyI ue ue (2.4)
1 1 1 1 1

where the typical values were written below the terms to

which they correspond.

Considering turbulent flow, all stresses are of the

same order ie. a general stress must be of order

/Ue f/I, then Eq. (2.L) becomes

I 1 aP + 1 aT-xv [1 + 0(1 u 2)u+ v a u (2.5)
/0 ax /0 ~y L l' x ay

4]



where O(r/l) indicates a quantity of the order of magnitude

of dlI

Considering a laminar flow of Newtonian viscous

fluid,

x- , -- (2,y

In the 6 xy term, av/ax is smaller than aulay.

Therefore, Eq. (2.5) becomes

- 1 P + ) a U l + OL I= u 21u + v 6'i (2.7)
0 5 ax L Y1 1 a y

Similarly, Eq. (2.2) can be written as:

-1 aP + I jyy + i a 6 xy = u )v + v av
Pay P aY p ax ax ay

1 ~P ~ue U/Le Ued u eL u e (2.8)/" y 1 01 , V_ . 1j 1

If we write all the viscous terms together,

laP~ii~(L [1/SOf ~ i ue [ (2.9)

P - y 1 uel 11 1

It is known that (r/l ) c-' /ue 1 is laminar flow, so that the

viscous terms are also of order ueI /l ie. aP/,)y is of

order ui d112, but the pressure difference between y=O and

y= df is of order pueaf2/la and the difference in aP/lax will be

negligible compared to the external stream dynamic pressure,

1/2 Pue Therefore, for practical purposes,

I = 0 (2.10)
ay

14



For this case, since changes in P must be of the same order

as changes in y, the pressure does not change significantly

through the boundary layer.

Thus, the entire equation of motion in the

y-direction may be dropped from further considerations. In

this way, the following simplified equations are left for

the analysis of a boundary layer:

4)u + -)v = 0 (2.3)
ax ay

-1 aP + u = u ' 3 u + v tu (2.11)
_5 YA .' ax ay

P = C (2.10)
%y

These relations are known as Prandtl's boundary layer

equations. Unless one encounters very high Mach numbers,

the aocve orders of magnitude are not changed when

compressibility effects are considered.

B. LAMINAR AND TURBULENT BOUNDARY LAYER

The low viscosity fluid flow past solid bodies should be

considered as two regions. One is the thin region near the

boundary in which the effects of viscosity are concentrated

and the other is the region further away from the wall in

which the influence of viscosity is so small that it can be

neglected. Thus, it can be stated that all viscous effects

are concentrated in the thin region which is known as the

boundary layer. This boundary-layer type behavior requires

15
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high Reynolds numbers. Generally, the thickness of the

boundary layer (d) is defined as that distance from the wall

where the velocity (u) differs by 1% from that (Ue)

calculated by the ideal flow analysis.

Consider a constant-property, steady, two-dimensional

flow past a flat plate. If u/Ue is plotted against a

dimensionless y-coordinate, = CUe/vx) V , the velocity

profiles are geometrically similar and reduce to a single

curve for a laminar boundary layer flow. This is well known

as the Blasius profile. The geometrical similarity is

maintained regardless of the Reynolds number of the flow or

of the local skin friction. For a turbulent boundary layer

flow, since the viscous-dependent part and the remaining

Reynolds-stress-dependent part of the profile require

different length scaling parameters, there is no choice of

dimensionless y-coordinate that leads to the collapse of the

complete set of velocity profiles into a single curve.

The conspicuous difference in profile shape between

laminar and turbulent shear layers can be found in the wall

flows. Because of the constraint on eddy size in wall

flows, the efficiency of turbulent momentum transfer

decreases rapidly near the wall. But, the efficiency of

viscous momentum transfer is not dependent or, y distance in

the flow which has no heat transfer.

16
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C. TURBULENCE MODELS

The unsteady continuity and Navier-Stokes Equations are

valid in both laminar and turbulent flows. But, it is too

difficult to deal with the in.stantaneouls properties in

turbulent flow because the turbulent Ulow has a complex

time-dependent behavior. Thus, the following turbulence

models are used to make the analysis of turbulent flow more

convenient.

1. Prandtl's Mixing-Length

Consider two adjacent stream layers of fluid which

move with different velocities. If a particle of fluid

moves from one layer to the other, a momentum change occurs

between two layers. The fast particles which enter the slow

layer make it faster and the slow particles which enter the

faster layer impose a drag on it.

The mean velocity of a stream layer is 'a, and that

of the other is u + 1 a ia/y where 1 is the distance between

two lcyers. Also, the fluctuating velocity in the

x-direction is u', and that in the y-direction is v'.

Prandtl assumed that the turbulent fluctuations are due to

the difference in the mean velocities of the two layers. So

u' = 1 a2i/ay ie. the fluctuating velocity in the x-direction

is of the order of the difference in the mean velocities of

two layers which have a distance 1, where I is the mixing

length. Prandtl also assumed that all components of

16
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fluctuating velocity at a given point are of the same order

of magnitude. Thus, v' can be defined as v = kl au/ay

where k is a constant.

The turbulent shear stress due to momentum exchange

between two layers is the rate of momentum transfer per unit

area. Then the mean turbulent shear stress on the fluid is

'.= -pu'v' where u'v' 11i cu/JyI jkl a5/ayl Since the

values of 1 and k are unknown, combine these two unknowns.

Then, t P1 IJ/ay Iau/Iy where 1 is called the mixing

length.

2. Cebeci-Smith Model

With the eddy viscosity concept, the momentum

equation for 2-dimensional laminar and turbulent boundary

layers can be written as:

(bf") I + m+1 ff1' + mEl - (fe)] = -Xf f "af\

where x is the transformed x-variable

m a k
(I + t) (1 + )

Let the turbulent boundary layer be a composite

layer consisting of inner and outer regions. Then, the

eddy-viscosity formula for the inner region is:

r2r

where 1 is the mixing length for 2-dimensional flow

18



-~ exp [ ~ 1o Rx xr-lz1200 tr i

is an intermittency factor for a flat plate.

R xt= ue xtrl) is the transition Reynolds number.

The eddy-viscosity formula for the outer region is:

(6m). u e - u) dy (y . y _

where R9 ) 5000, the universal constant a 0.0168.

R( ( 5000, 0< varies with R& according to the
the empirical formula

- 0.0168 1.55
1 +A

A = 0.55 [i1 - exp (0.243 0 -0298 k )I

i = R9 /425 - I

But this model is not used in Cebeci's interactive computer

program which will be presented in Chapter IV.

D. TRANSITION

The boundary layer with a finite thickness starts out as

laminar at first in the flow past an airfoil. However, the

boundary layer becomes unstable and all small disturbances

begin transition to the erratically unsteady condition which

is known as turbulence.

In the boundary layer on blunt bodies, transition nakes

the point of separation move downstream which decreases the

width of the wake. There is an abrupt change in the drag

curve of a sphere. This change is due to a boundary layer

effect and is also one of the transition phenomena.

19
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The process of transition on a flat plate at zero

incidence shows a sudden increase in the boundary layer

thickness. Furthermore, transition involves a great change

in the shape of the velocity distribution and a large

decrease in the ratio of the displacement thickness to the

momentum thickness. Also, it causes a large change in the

skin friction.

As described in the above, the transition from laminar

to turbulent flow plays a very important role. Since the

transition is not an instantaneous process and the flow is

intermittently laminar and turbulent over a certain length

of the airfoil, a certain point where transition takes place

cannot be assiyned. At present, there are no exact methods

to calculate the flow within the transitional region.

Nowadays, however, two methods - Michel's method and the e

method - are used to predict the transition empirically.

1. Michel's Method

Michel investigated many kinds of data for

incompressible flows without heat transfer and found this

empirical correlation,

r 1 o. 46
RP 1.174 1 + 22400 Rxt r

where RO Ue 8/1), RX = Ue x/ )

Since the momentum thickness grows more rapidly when

the pressure gradient is positive, Michel's equation

involves the effect of pressure gradient. However, the

20
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effect of surface roughness, which is also very important,

is not included.

2. The e? Method

This e method is of spatial amplification theory

based on the solution of the Orr-Sommerfeld equation which

forms the point of departure for the stability theory of

laminar flows.

= a = esp - i d r dX

."

where X x/V. o(;i , ;= dP*

g'(x,y,z,t) is a typical disturbance function.

= 27T (A% is the wavelength of the disturbance).

Ar is the circular frequency of the partial oscillation.

,8r is the amplification factor which determines the
degree of amplification

The basic assumption is that transition begins at

the point where a small disturbance introduced at the

critical Reynolds number is amplified by a factor of e

.,'

E. LAMINAR BOUNDARY LAYER CALCULATIONS

1. Similar Solutions
'

a. Blasius Solution For a Flat Plate

Assume - a flat plate at zero angle of attack

- steady, 2-D, laminar, incompressible
flow.

21



- constant visccslty

- negligible body force

Since the pressure along the plate is constant,

*, there is no ptesLure gradient. The simplified Navier Stokes

Equation is:

U aI + v a i (2.12)
ax 1)y 3Y

(B,C) y = 0; 11 = 0, v = 0

To transform from the partial differential

equation to an ordinary differential equation, define the

following transformation parameter:

= _ y where f(x,y)

)xUL f where f = f(j) only

The stream function was defined to satisfy the

continuity eqiation.

=U = xU. df O = f', where f' df (2.13)
jy d'T y

au UW d f' I UCO f " y L ~ i
x d x 2xvz

S- U!f" ( 2. 14)
2x

*V I/ = xU. df '7 - U 1/2 x )f
ax d7' ax

1/2 v' UM (f' - f) 2. 15)

a u = U df' a* = U0 f" UW 2.l1)
ay d11 ay 1) x

22



. = U U df" 4 = U f"'17
d' It Jy V x

Substitute Eqs. (2.13) (2.17) into Eq. (2.12), then

f f + 2 f"' = 0 5

= 0; f' = 0, f = 0

The solition of Lhis Blasius equation is presented in 

"Bindary Layer Theury" by Schlichting. From the

"r,,nsfur ma.ion reldtion,

o_ : 5.C = 5.0 = .7208 
x U x/,' Rx , x R.

( v ) _ 0.8604 0 = 0.664

,W : 0.332/'U _

C;' = 0.664

L. Falkner-Skan Method

The Falkner-Skan transformation is for 2-D,

=ix4symmetric laminar flow, The simplified Navier-Stokes

Eq.uation is:

1 ~u + v u 1 - P + _

Jx aY x Jy

B,C) y= 0; u =0, v= 0

y = '; u = U(x)

Take the same t as Blasius' but different with a function

f * f(xj) and follow the same procedure as Blasius' using

23
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-1 dP = U dU
, dx dx, then the transformed equation is:

f"' + m + 1 ff" + m f = x , f f f
2x x

where m is a dimensionless pressure gradient pairmeter

defined by:
m = x dU

B.-C) , = 0 , 0

7 o; f' = 1

For similarity in 2D, laminar flow, assume f is a function

of 1 only. Ten.

f' + m + I ff" + m - (U) = 0 (2.18)

(B.C) 0 0; f' = constant, f' = 0
= ; f' =-

The fact that m is a constant leads to:

= c x

where c is also a constant.

In the case of m = 0, ie. U is a constant,

Eq . . ". '. reduces to the Blasius equation. f m I whic:

means 3 2-D stagnation flow, Eq. (2.IS becomes the Heme:-:

e . a t : n

f"t  + ff" - (f') + 1 = 0

Zome solutions of the Falkner-Skan equation for various

valaes of m are presented by Cebeci and Bradshaw.

.ntegral Methods

i. Integral Momentum Equation

.4



For steady, 2-D and incompressible flow,

I
u au + Vau = -P + a u (2.19)

x y 0 x Jy.

_ 4 __2 = 0 (2.20)

y )

From Eq. (2.20), u( )u + v 0
ax y _

At the edge of the boundary layer, U (x) atU(x)
a x ' x

Then, Eq. (2.19) becomes:

J u + a(uv) U(x) d U(x) + ) ou
J x y dx y .,,z

Integrate this equation with respect to y, from y = 0 to

y =- , using 7u = du
dy

du dy - U(x) u dy - U(x) dU(x) dy
a x a x x (2.2 1

Also we know, = - u ) dy
x)

= u ( - u dy (2.22U(x) U (x)

Substitute Eq. (2.22) into Eq. (2.21), then,

dU (x)O + f U(x) dU(x) = "['___
dx dx /0

This equation is known as the momentum-integral equation of

boundary layer theory, or as von KArm~n's integral equation.

b. Pohlhausen's Method

Assume a polynomial of the fourth degree for the

velocity function,

25



.z 3 4-
u = f(A) = a A + bA + cA + d A

SU(x)

where ) is the dimensionless distance from the wall,

A = y/f and 0 < A < 1

(B.C) = 0; f = 0,

A = 1; f = 1, f' = 0 f" = 0

Also U(x) d U(x) + pau 0 when A = 0
dx hy

2.
d U(x) = - 2b = A
dx

where A is the shape factor.

then, f(A) = F(A) + A G(A)

where F(?') = 2 A- 2A + A
G( ) = 1/6 A (I -,)

Thus the boundary layer parameters df 8 and 7rw can be

determined, if the velocity profile is known, as follows:

_ 3 - A
10I 120

2.

1 (37 -A -A
63 5 15 144

T-w = x 2 + A

~1 7)
c. Thwaites' Method

The integral momentum equation can be written

as:

dO + 0 (H +2) dU(x) CL__ (2.23)
dx U(x) dx 2

(B.C) y =0; u =-U(xL K , u = U(x) L(K)
ay YX ay 0

26
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where H = C a

9L
2 ,U-(x) 6 U(x)

K = dU(x)
V dx

then Eq. (2.23) can be reduced again.

U(x) dO& 2 L(K) - [H(K) + 2]] F(K) (2.24)
, dx

Thwaites writes an exp-ession for F(K)

F(K) 0.45 - 6K

Then we can write Eq. (2.24) as

Ux)_ 0.45 U ( x) dx
US(x) "o

If e is calculated for a given external-velocity

distribution, H and C, can be determined with the following

relations.

For 0 ( K < 0.1

L 0.22 + 1.57K - 1.8K

H 2.61 - 3.75K - 5.24K

For -0.1 < K < 0

L = 0.22 + 1.402K + 0.018K
0.107 + K

H = 0.0731 + 2.088
0.14 + K

3. Finite-Difference Methods

The finite difference methods are the most flexible,

practical and ef"Icient methods to solve the boundary layer

equations.
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The box method, presented by Keller and Cebeci, is

introduced here as the preferred finite-difference method.

The momentum equation achieved by the Falkner-Skan

transformation can be rewritten in terms of a first-order

system zf 7T's. Then the .esilting non-linear system is

1 4near -zei by Newton's method. Finally, the block.

e"imnatior method is used to solve the linearized

effee:ce equations cf the boundary layer problem.

a 7jox Method.

"sing the new coordinate system, f and r, the

transformed momentum equation for steady, 2-.,

incompress.boe flow becomes:

f : 2. 25a

S= v 2. 25b

'V m fv + m( I-. =(u cu - v f

Kn

/ F
7/ '** )

Fre 2.". Net Rectangle For Difference Approximaticn

where ) = x and = t

I



A prime denotes differentiation with respect to j'

The boundary conditions are

0 0; f(t, 0) = 0. u( , 0) =0 (2.26)
7 Do ; u(  , 7, = 1

We denote the net points shown in Figure 2.1 by

= 0" + Km n = 1, 2,..... n
;= U, ; ' l=: .- + hj j = 1, 2,..., J (2.27)

7 T Teo

Here n and j indicate sequence numbers.

With g = g( n, Tj) denoting the value of any

quantity at the mesh point ( in, 7j), centered quantities

can be written as two-point averages:

1/2( + ~ 1,(~ /2( 7i + 7-) (2.28a)
n-n I- n n n

1/ 12( + -. =1/2C I. + (~ 2.28b)

The finite difference approximations of Eqs. (2.25a)

and (2.25b) for the mid point of the segment P, , PX are:

ff-e = u , ( 2. 29a)hi
uj - u = v' (2-29b)

h a

Eq. (2.25c) can be approximated similarly by

centering about the mid point of the rectangle PI,P2,P3,P4.

1. Centering Eq. (2.25c) about the point

D !-7)

Let the left-hand side of Eq. (2.25c) be L and use

Eq. (2.28b)

2,
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,n- 1

7N W617 7z - -- 7W-

2 Kn

By rearranging,

fl n
by + - m + I \ f n n f v +.,

2

inI

:- L * - - L4) "  
- fv) + r v - v f. .. f

bv 'fv -f C0(u ) +f v v - r A .-

where = m +* *( o<= M

-' ,- o- ""3-R T + LX + v) u ) m

L (bv)' + m + 1 (fv) + m ( - u )
9

2. Centering Eq. (2.30) about the point
s ing Eq. (.29.

bv) .. b" v3  - bt - ,

T h

The Eq. (2.30) becomes

~~b-~~ -y b- v ~ fv)i- - dL(u "j
- n A1 M-o v v .. f . f v.a =- AL. x2 _1

where .- f

- h i v i vi -+ m + f  v +
a-! [ Ji., ]

The boundary conditions at g =4, are

= ., .n :

-: : . 2. 32

n.
-' *% . .*~. % . ~
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b. Newton's Method

For simplicity, let (fi" ui vi be

(fi, u, vj) at

Then Eq. (2.29) and 2.31) can be written as

fh - f'_ - h__ (us- + ug'_g ) = 0 (2.33a)
2

Ui - ui" - 1 (vi" + v4-_ ) = 0 (2.33b)
2

h (bi vi - b,*-, vg., ) + a<,(fv).y -f v((uj ) *-
Ml-1 nl-I

4f - f v ) = (Ri- 2.33c)

Here the unknowns are on Lhe left-hand side and RP-

involves only known quantities.

Now, Newton's Method is applied to turn

Eq. (2.33) into a linear system complemented by boundary

conditions Eq.(2.32) and initial values
IV) (17) 10) /1 -I

f = 0 Uo = 0 Vo = V'

f ui = U v = v. ( <j J-l)

-, (9) o-
f f -7 u 1 V =1

The superscripts in parenthesis represent the iteration

number as follows:

f. • u. , v i = 0, 1, 2,

f f + 0 ,f u~ +* fu ,

where if <( f, iu << u, iv << v.

Replace f',u , v, in Eq. (2.33) with these expressions.
Then Eq. .33a) becomes:

I . IIt I I)f +f f o;4 -f #'- u + u + u + 4 -1 ,
a i-a-i ~ I +oU

3:i
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-* . . . . - . , . . , S ,

Thus,
!, ,r~f - ,rj._,_- .j [,r + ,/ .., ] = r )' 2 3a

2 +2.34a

where (r ,) - = f + h1  u 1 .

From Eq. (2.33b),

1 " + 1 ) r +1u +4u,. - ,L., - ., - ._ Iv+ ,d. + v v,, C
2

/u - du'-L ' + '"- ] = , .2. 34b)

where (r 3 )#,= rI. - uu * hi 4

From Eq. (2.32c)

h *biv b v-vh i- ( b. v b . ivi, ) 0/o,O (fv~t. . - . -u ) . '

+ 01 - f v'

[h- ILI~ lCf- b ;-If d -11

"v. ,.L fiv 2-
here .( / + V. f + *

P _ h~ . 4 +i  .. h '._ Uj ,, f ., ,,

her 0 fv _,11 2 f , + f#,f -

v= 12 d' v + 'dU v

then (s, V + ( v ,  f + s f

I b9-' bd.

- / i v--#S .i 1 Il i

where (r,) "  R _ h b v , -fd..+I' -s))I,)£u/-..'- -

0(-a- + "4 (va. ; v a > a y,

-I *l (I -

(s V h-h b ; + o, f
2

CS )a. h b; I + f< - C

(s3 = - . + Lie v _

32
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(5 )2.j + 01

=, )J, v0 -, +

(s -2  - / .-

(si). = - O, .a U,.

the boundary conditions are:

fo = 0 0 Eu = 0 (2.35)

c. Block Elimination Method

Eqs.(2.34) and (2.35) are the linearized

difference equations of the momentum equation for external

flows which has a block tridiagonal structure. We can solve

these equations by means of the Block Elimination Method a3

discussed by Keller (1974).

Let us define the three-dimensional vectors,

and r., to express the system in matrix-vector forn,

0 i'J 1_ J [
r, )0 J

j4°ly
r. L I r = b(r.a 1 < j i -I (2.36)

r 3 o L r 3  ) 1

.%|

3--1

. ", " " , . " . - + - . . • . - .. . .% - -. .-. .-... . .. • . . ,- . ,.,+ - . . . ' - ..? . . . ,% "" - + • . ,



r =e

rr~~e3 = 3 rlces ), B =

1 - -

r 1

Ao  = . . } = .S ~ :Ss- S,

A .,, j .- I '1

L]

- 'C - C. 5 .S .3 3 5.) 5 y,

0 0

LO I*''~ - h

- , ,-, _( _"- -S

-
0  1 -h,', ,'2j

-her Eqs. ,2.34 and 2. 35 7 can Le wrtter. as

-4

. *; ,.-." , .,. -. . .. *-.- -. . .. .. .. . ". . - - ... - '... ,,* * - .. .. .S ,
• . ., . "*. * . .- , - , .'. . ... '- , " ", -"d ( *" * 4 - .4...'.. , " ,,," "., ";" ","" , " "



where

AO Co ,
B, A# C, r,

B3Bi Ai CiC r

By-, A T, Cj , dirr

B A3  L.

Let us factorize the matrix to solve Eq. (2.38)

= xy (2. 39)
where

y c,

yj C 1

L yc_ _ e3.' J

Here I is the 3 x 3 identity matrix.

xj and yi, are also 3 x 3 matrices.

According to Eq. (2.39), we can find

y., A. (2.4Oa)
x2  y , = B; (i = 1,2,..., J) (2.40b)

y- A xi c . (j = 1,2.... ) (2.40c)

and the matrix x1 has the same structure as that of the

matrix Bi. Therefore, xi has the elements like this,

[ x o)j (x, 1 x,
x " x (x ,.a (XJ) 1

0 0 0

Ile
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- .4-. .-. .. "

and yacan be denoted as:

F(y,, ~ (Y.x )j I. C ) .

YY. =( . .3 ) YC Y i
0 18 -h 4'1 2

From Eq. (2.40a),
Cy1 -,.'ia ' - Y, 3)o =

y = 1Y1 3 1 0

From Eq. 2.40b)

x-I = -I/2 h, x 13 = 0

x = 4) xi), + x 3 -2 S

From Eq. (2.40c)

(y, I y -hj x$~ Cy, hi . (X13 )j22

y - (s 3 4.k -= (s -) - (x, ); (y,) )4: (sI) + h X+. _, -7)
2

Then we can compute the elements of x with Eqs. (2.37: and

;2.40b) for 1 J _ J,

Y., 4, + 2 , y , l
O2 L 2

x x x V~~_
x Cx,, " Y -, + ' a i-

2 .2

_x= xx ' (,~ ', 's.. '.a,  S6
y, 1 2 Y' 6

y y , y ' ' # - _ v a-. "- a' ,j'-, y", ,Y" y - "Y.,I"' '" '' "

L

. 6

• . .. . .... .. %. . . . . .



2 .°,. '4,
y~ ( y'

Let yf = z, then xz =R 2.4 1-

Thus, z0 = r0  (2.42)

z - , z , 1 < J)

- Z a - .

From Eq. (2. 42) for j = 0

(z)o =(r,)0  (Z.) - (ra)o z3 )0 -' (r,)0

and for 1 ( j < J

(z,)" = Crt)" -C x ) (z ). - (x .)" z ) "  - (x ) '(z7)'-

(z.. =Cr.)j-C x.,, (z,)-, -(x )j z.,)g:, -=x.(r,. ,"

(z 3 ); = (r3 ) ,

From Eq. (2.41),

Y z (S 2.4 3a"

' , . (0 1 j _ ,-1) 12 433 )

Then the vectors can be calculated with Eq. (2.43). The

three components of , for j = 0,1,2,...J-1, are:

U -2 u + -e, vio+e
2

-r y Z' + e . -y,y zf.,

where e1 = Z3 )i u,,, + v' +v~
2
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- (y. ) . y,3  - + Y )" (y

and for j J

v : ej (y, ) - e3 Y,, )3"
'3 ~Jy2 '5 - )y-)j

,w ' e. - (y, 3 )j ivl

whete e Z I )j - Y'. iiu

e z, )I - ( ) dIiuI

These ;alulaticns are stopped when

d'v0 " K <

where v(o) is the wall shear parameter.

is a prescribed value.

. 7RBULEN' BOUNDARY LAYER CALCULATIONS

7arbulent fluid motion is an irregular condition of flow

i:, which the various quantities show a random variation with

time and space. Therefore, turbulence is characterized by

random and chaotic motion of fluid particles.

The velocity varies randomly at any point in a turbulent

fIuid The velocity components in a three-dimensional

turbuient fluid are:

V = v V

W W W



where u, v, w represent the mean velocities4 Ai
u= 1 u dt, and so on.

t - t ,

u', v', w' represent the amount of fluctuation of the

instantaneous velocities from the mean velocities.

Obviously, we can see that

I Ju# dt = u o, etc.
tx - t, i

Similarly, the following quantities can be defined,

1 U d -- u' , etc.
tx - t, dt

it1 ('v' dt = u'v', etc.

Even though the flow is turbulent, the time-dependent

momentum equations are valid. However, it is impossible to

solve the momentum equations for turbulent flow because the

fluctuations are random and chaotic. Thus, Reynolds

modified the momentum equations by introducing the mean

Uvalue and fluctating values of the flow quantities and by

assuming the fluctuations to be continuous functions of time

and space. From the momentum equations,

do + u u + v u + w u = -I P +P/ u + u + 'U

at a x ay z ax ax aya @z

By multiplying the continuity equations with u

u( bu + a-v + Cw) 0

39
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Sum these two equations and rearrange, then,

au.= - I jp +- a " - uT aPa - uv) + d u - uw)t-- a x ax (x ay ayz Jz

Here take the mean value of each term using u' = 0,

+ u') a u + =u d
a8t4 t dt

-1 (P+ p') =-1 ~
7a ax , ax

u + u') - (u + u') - (u' 4 2 uu' + u)
ax ax

__ - u - u

.(u + u') - uv - u'v'
8Y 6 y

d(u + u') =)J_ - uw - u'we (2.45)
C)z C)z

Substitute Eq. (2.45) into Eq. (2.44) and rearrange. Then,

1 (Jc + _ + v' Ju + u i

a~~ -yj

S-~~AP + UfJ-# " + au'v, + u'w, )+
x x a y ) z )(2.46a)

By similar procedures for the other directions,

J r + u ; + -V _ + 1) ~v
at ) x z /

-__P +,*t; -v'u' + V' I + 'v' w C2.46b)

z x ay z

- azI + a w Fu y + J' ), (2.46c)

and from the continuity equation,

+ __ + C) = 0 (2.47)
ax ay az

40
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In laminar flow, we have 4 unknowns and 4 equations. "

But in turbulent flow, we have 10 unknowns and only 4

equations as shown at Eqs.(2.46), (2.47). This is the

reason why we need the turbulence models which were

discussed in Section C.

S. SEPARATION

In some cases, the boundary layer thickness increases

considerably in the downstream direction and the flow in the

boundary layer reverses its direction. The change in

direction causes the decelerated fluid particles to move

outwards, which means that the boundary layer is separated

from the wall. This phenomenon, boundary Layer separation,

is always related to the formation of vortices and to large

energy losses in the wake of the body. .,

Let us consider the simplified boundary layer equation

in order to investigate two-dimensional separation;

u Ju + v u =-1 p + _u

Ox oy / 2 x y"

and define the separation as

( u) u

Since u v = 0 at . = 0,

[ ' ) '1 _p

d- y(0 ax

41



*' The velocity profile in the boundary layer always has an

inflection point in the region of decelerated flow and the

velocity profile at separation point must have an inflection

point. Thus, separation can occur only when the flow is

decelerated. in two-dimensional separation, a bubble of

fluid which has low velocity is always formed. This bubble

is often unsteady and distinguished by interior streamlines

wh.ich are closed loops or which extend to infinity.

There are two severe problems in boundary layer

calculations when separation occurs.

I.The Goldstein singularity at the separation point in
direct boundary layer calculations.

2. Numerical problems downstream of the separation point.

If a boundary condition prescribes the pressure

gradient, then the boundary layer methods suffer from a

singularity due to separ-ation. Moreover, the singularity

causes the numerical breakdown in direct boundary layer

methods near the separation point. This Goldstein

6inguiarity can be overcome by using the displacement

thickness or the wall shear stress, instead of the pressure

gradient, for the boundary condition, which makes it

possible to integrate the boundary layer equations through

the separation point. Also, the full Navier-Stokes

equations exhibit no singular behavior.

S4
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On the other hand, the boundary layer equations lead to

a numerical instability in the region of reversed flow. The

FLARE approximation is the most common method to overcome

this instability. The momentum transport term

u ju/dx is deleted where u is smaller than zero. But the

accuracy of this approximation decreases as the region of

reversed flow increases. Therefore, it is necessary to

introduce an upstream influence in that region. This is

incorporated by the downstream upstream iteration procedure

(DUIT) which consists of a sequence of alternating up- and

downstream sweeps with the momentum transport term u au/ax.

4

a-

a.-

'

'a,
,%.
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III. INTERACTION METHOD

A. INTRODUCTION

If the flow remains attached and the Reynolds number is

high, the pressure distribution and the overall lift force

can be obtained from a potential flow solution.

Conventional boundary layer methods provide additional

%4 information about the skin friction distribution and the

overall drag force. However, if the flow separates, no

information is available for regions downstream of the

separation point. Therefore, the overall forces cannot be

obtained.

For this reason, interaction methods are introduced to

overcome this problem. They provide a special coupling

between the inner viscous and the outer inviscid flows, and

can be classified as follows:

1. Weak interaction methods

a. Direct method
b. Inverse method
c. Semi-inverse method

2. Strong interaction method

The weak interactions provide only a loose coupling

between viscous and inviscid regions, i.e. two different

regions are treated alternately. The viscous flow solver

44



deals with the flow in the viscous region and yields the

boundary condition of the inviscid region, while the

inviscid flow solver deals with the flow in the inviscid

region and yields the boundary condition of the viscous

region. The exchange of information through the branda-y

condition is slow, but regions such as those near separation

and trailing edges require fast and direct coupling between

viscous and inviscid region. While the strong interaction

method treats displacement thickness and external velocity

simultaneously, the weak interaction methods process one of

these quantities as input and the other as output.

I. Inviscid flow methods

a. Direct boundary conditions

(1) Prescripcion Lf the airfoil shape

(2) Zero normal velocity at the surface

b. Inverse boundary conditions

Prescription of a velocity distribution for

the unknown airfoil shape

2. Viscous flow methods

a. Direct boundary conditions

(l) No slip condition requiring zero normal

and zero tangential velocity at the

surface.

45
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(2) Prescription of the external velcclty

i.e. u-component of velocity at the

edge of boundary layer

b. Inverse boundary conditions

(1) No slip cuiJitijn

(2) Prescription of the displacement

thickness

c. Boundary conditions fur simultaneous

interaction

(I) No slip conditi.on

(2) Prescription of a linear combination of

displacement thickness and external

velocity

WEAK INTERACTION METHODS

1. Direct Method

A direct inviscid flow solver is combined with a

direct viscous flow solver (see Figure 3.2). The boundary

conditions are:

o (x,o) = 0 v(x,o) : 0 3.2)

u (x, y ) = Ue (x,

This method is terminated at the point of vanishing

skin friction. In the direct scheme, the pressure is

calculated from the inviscid region, but the di.placement

thickness is determined from the viscous region Because cf

46
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this phenomenon and Goldstein singularity, this method '°.

not appropriate for flows itlh strong interference effects.

between viscous and inviscid regions.

2. Inverse Method

This method consists of ar inverse -r;>scid :nd r,

inverse viscous flow solver see Figure 3. 3". The boundary

conditions of the inverse boindary method are:

(x,o) = 0 , V(x,o) - 0 (3.2;
~ x,y )' . X, ye~ [ye -~)

where 45 is the stream function.

The roles of displacement thickness and external

velocity distribution are exchanged in this method. The

troubles related to the Goldstein singularity can be

overcome, but the whole procedure takes a long time due to

very slow convergence. Thus, this method can be applied t.

the regions of separated flow only and needs severe

under-relaxation.

3. Semi-inverse Method

A direct inviscid flow solver is combined with an

inverse viscous flow solver (see Figure 3.4). The input is

the displacement thickness and the output is the external

velocity distribution for both solvers. The two external

velocity distributions are combined and then an updated

displacement thickness is obtained through a relaxation

procedure. A formula for satisfactory convergence is:
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d new (x) = dold (x) 1 ( Uei -A)

where w is the relaxation parameter.

The numerical weaknesses can be cvercome, but the

coupling is utill loose.

. STRONG !NTERACTION METHOD

The simultaneous method solves the boundary 13yer

equations subject to an interaction law 'see Figure 3.5,.

Viscous displacement effects are allowed to cause

substantial changes in the external velocity distribution.

Since both displacement thickness and external velocity are

treated as unknowns, one more additional relation, the so

called interaction law, is needed. Thus the bcundary

-cnditrons ire:

x -o v'x,o' :

4, , = u x,Ye Y[ - d xe -7 4

X , Y,,e  U e x ) / 7r - , Y e ' ¢ d
- J~ CX l 1 ~ __ _ d I I x t

The " azt equation represents the interaction law.

Here, the external velocity for the boundary conditions

can be written as:

U (X,y e ) = Ue (x) U e 'x) + 4 Ue X) (3.5,
0

where Ue (x) is due to inviscid flow past the airfoil

Me x) is the perturbation velocity due to the

displacement effect of a boundary layer.

, .... % ............................. .... . . ...... . . ,,. ... ,. .. , .. : . ... ,



To obtain AUe (x), the blowing velocity concept is used. Let

us consider an airfoil along which sources are distributed

(see Figure 3.1). This surface distribution of sources

represents the effect of boundary layers. There are two

ways to predict the displacement effect of a boundary layer

on the outer inviscid flow:

1. Compute the inviscid flow past a displacement
body

2. Replace the condition of zero normal velocity on the
sur face with a condition of prescribed blowing
velocity at the surface

VT v Cx ,/(

~Ue(x)

/ I I v(x,o)= 2

Figure 3.1 Blowing Velocity Concept

The streamlines are displaced away from the surface by

the distributed sources which eject the fluid at the

surface. Thep the virtual displacement body becomes a

streamline and the flow tangency condition is:

V= (xJ (3.6)
Ue(x)

From the thin airfoil approximation, the displacement

thickness is assumed to be so small that u-component of

velcity do not change across the layer and the airfoil it,

49
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this connection can be represented by a straight >rne.

Therefore, the blowing velocity .'x,3' is eq-a. to half :f

the source strength 6-(x'.

v kx , c ,'2 0- x 3. 7'

V,x,o = v x, '. v dy

- -e ___ + S 4 ,
d x ox

dx

7 h..iS, d t = 1 x .

dx

Ncw, the pert;rbaticn velcity doe to the displacement

effect can be written a:

;e x =____ d 0-:h d .

LiT x x --

Fna:;a , .c.. 3.6~ becomes:

P .... represents the ineraction law ir. osabe fzrm and

he integral on the right hand side is known as the {ilrert

integral .

:n, the simu taneoos nethd h "isi "bws.e

prcvides an initial externa" velocity distrkb ot~n, t. 2 he

i 'scid ...flow solver is not incorporated in the :vera'"

~teraticn .process. -hos, the viscous fbow sc'vet needs tne

interaction law to. obtain the ncsayifrnto :~

tre :nv;'s:ld re ,:on.

- . .-. ...
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p.

p

I INVISCID FLOW SOLVER

Airfoil (Direct Boundary Conditions)
Geometry Input: Updated shape of

--------- displacement body < -----
Output: External velocity

distribution

-------------------------------- -

Ue(x)

VISCOUS FLOW SOLVER

I (Direct Boundary Conditions) .
Input: External velocity "

distribution 4(x)
Output: Displacement thickness

distribution

I ; Ix I

omparison of old and No

Figure 3.2 Direct Method
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INVISCID FLOW SOLVER I VISCOUS FLOW SOLVER

(Direct Boundary I(Inverse Boundary
Conditions) I Condition)

ilnput: Updated shape of I IInput: Displacement thick-
displacement body II ness distribution

Output:External velocity I IOutput: External velocity I
distribution distribution

* velocity distributions

RELAXATION

Update displacement thickness
I distribution thickness distribution
I and the two external velocity
I distributions.

Figure 3.4 Semi-Inverse Method
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INVISCID FLOW SOLVER

Airfoil I (Direct Boundary Conditions)
Geometry I Input: Airfoil shape

- Output: External velocity I
Distribution

I Ue (x)

"" V
-

VISCOUS FLOW SOLVER
and INTERACTION LAW

(Displacement thickness and externall
velocity are treated as unknowns) I

I Input: Data obtained from previous I J(x)
sweep and initial inviscid 4----
solution I

Output: Displacement thickness I I
distribution and external I
velocity distribution I

I OVER I
(x) RELAXATION OF

CONVERGENCE?

Comparison of old and No
new displacement

thickness

Figure 3.5 Simultaneous Method
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IV. DESCRIPTION OF CEBECI'S INTERACTIVE PROGRAM

0.1

A. INPUT DESCRIPTION

1. Introduction

The Reynolds number is the most powerful parameter

which can affect the flow. Wholly different flows can '

result from different Reynolds numbers (e.g. 6.OE + 06

against 0.28E + 06). Even though a flow with high Reynolds

number behaves well and does not separate, it may have an

extensive flow separation at a low Reynolds number.

Numerical breakdown in boundary layer computations is partly

due to this extensive flow separation at low Reynolds

numbers. To avoid unrealistically large regions of flow

separation, it is necessary to make some changes in the

turbulence model for transitional flow. Reduction in

transitional region to a proper level is a method to

decrease numerical problems in computation. By doing thib,

more reasonable results can be obtained in low Reynolds

number flows. Also, the computation at low Reynolds numbers

needs more iterations to converge than at high Reynolds

number, and the lift coefficient increases with Reynolds

number at the same angle of attack because low Reynolds

number flows exhibit a stronger displacement effect than

high Reynolds number flows.
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The results may be affected by transition location.

The transition location can be either fixed by the user or

computed from the following empirical formula given in

Cebeci and Bradshaw (1977).
v-46

Re= 1.174 ( 1 + 22400 ) RX  (4.1)
Rx

Laminar flow separation, however, may occur upstream

of the transition location predicted by the above equation.

In this case, it is assumed that the onset of transition

corresponds to the point of laminar separation, and the

. following message will be issued in the output:

TRANSITION LOCATION HAS BEEN RECOMPUTED AT THE
POINT OF LAMINAR SEPARATION

The results of this program agree well with the

experimental results up to stall at high Reynolds number

flows. However, low Reynolds number flows may not agree

well or experience numerical breakdown close to stall with

the following messages:

at the very top of output,

+ IFY 002 I STOP 1

or at the very bottom of output,

IFY 207 1 VFNTH: PROGRAM INTERRUPT (Z)-
FLOATING-POINT EXCEPTION OVERFLOW

IFY 259 I STNCT: /ARG/ = /argument/,
(HEX = hexadecimal), APPROACHES SINGULARITY
or MAXIMUM NUMBER OF ITERATIONS EXCEEDED

*. Thus, the range of angle of attack should be considered

carefully.
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If the user requires many sweeps with IPRNT 0 or

2, then the user needs to choose class "G" or "J" for enough

running time and add additional command ", LINES = (m)" just

after nnnnP on the following line to make enough space for

print:

I!* MAIN ORG = NPGVMI nnnnP , LINES = m)

where nnnn is user's ID number.

m is the number of output lines in thousand

(Generally 10s enough)

If the user does not do that, the following error

message will be issued at the very top of the output and

printing will be stopped abnormally:

IAT 1600 JOB number (user's job number) LINES EXCEEDED
IEF 4501 user's job number - ABEND S722 UOOOO

2. Detailed Input Data Description

The input to the computer program consists of 1

title line, 3 control lines and airfoil coordinate. User

must follow the data format for specified column and type.

I Title Line I FORMAT (18 A4)

This line provides any description as desired with -

any acceptable machine characters.

I Control Line 1 I FORMAT (5 15)
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Column Name Explanation

5 ITF(1) Transition flag for the
lower surface

10 ITF(2) Transition flag for the
upper surface

1 1 Point of transition
has to be specified
by user. This option
shall be used if ex-
perimental results
are available or to
avoid oscillations of
the computed transition
points. In the latter
case, fix transition at
the most upstream
occurrence of computed
transition.

= 4 Point of transition
will be calculated
according to Eq. (4.1).
No input is necessary
for XTRL and XTRU. The
compute4point of
transition will be
redefined, if laminar
separation takes place
upstream of the
location predicted by
Eq. (4.1)

15 IRSTRT Boundary layer restart
dflag.

Read Starting Solution Store Final
solution or Unit 2

-0 No Yes
- 1 Yes Yes

Leave 0 for general use

20 IGLMAX Number of sweeps.

Low Reynolds number
flows need more sweeps
to converge.

25 IPRNT Print flag to control
output print.
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-1 Summary print for the
last two sweeps

= 0 Summary print for each
sweep.

= 2 Whole print for all
sweeps.

I Control Line 2 1 FORMAT (4 El0.0)

Column Name Explanation

1-10 RL Chord Reynolds number

11-20 XTRL Fixed transition location
for lower surface

21 -30 XTRU Fixed transition location
for upper surface when the
stagnation point is above
the leading edge, XTRL may
be positive. When the
stagnation point is beneath
the leading edge, XTRU may
be negative.

31-40 ALPO Angle of attack in degree

Control Line 3 1 FORMAT (15)

Column Name Explanation

1 -5 MPTS Number of airfoil
coordinates.

I Coordinate Data Line I FORMAT (2F 10.0)

Input dimensionless airfoil coordinates as two columns in

one row ( x/c, y/c). The order is trailing edge ---lower
surface -- , leading edge -- upper surface -- trailing

edge. Thus, trailing edge is input twice.
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B. OUTPUT DESCRIPTION

1. Introduction

To take the appropriate results from the output,

user must check the convergence. This can be done by

comparing the convergence indicators, lift coefficient and

displacement thickness at trailing edge, when the

computation is completed successfully for the given sweeps.

:f the convergence indicators show steady values over some

sweeps i.e. each differ-nce of the convergence indicators is

less than 1%, the results are considered as converged.

Sometimes, the user may experience failure in

computations at low Reynolds numbers and high angles of

attack due to numerical breakdowns. These breakdowns take

p>ace when Newton iteration does not converge near to the

trailing edge on the upper surface or the computation is

terminated by Fortran error with this message:

IFY 2511 SSQRT; ARG = argument, LESS THAN ZERO

Also, extensive flow separation cause numerical

breakdowns of the boundary layer computation. These

unrealistically large regions of separation at low Reynolds

numbers can be reduced by changing the transitional flow

model.

2. 2etailed Output Data Description

The output of the computer program fcr :PRNT i

G
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and 0 can be divided into three parts as follows:

1. Input data and inviscid lift coefficient

2. Alternating boundary layer parameters for each
surface and wake.

3. Inviscid and viscous pressure distributions

The following is the list of computed boundary layer

parameters in the order in which they appear in the output

print

Name Name
in print in program Definition Explanation

X(NX) X(I) I Dimensionless sur-
c face distance from

the stagnation point

X/C(NX) XC(I) X Dimensionless chord-
c wise distance from

leading edge

V(I,NX) VWL(I) ( d f ) Dimensionless wall
d shear stress para-

meter.

CF CF(I) 2 Zw Local skin friction
IOU -coefficient

DELST DLS(I) IDimensionless dis-
c placement thickness.

( - u dy
0 tie )

THETA THETA(I) e Dimensionless

c momentum thickness

ee 4 e
UE(NX) UE(I) Uel Dimensionless exter-

UM nal velocity
computed from the
inviscid method with
viscous effect.
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W(NPNX) WNP(I) UeV Dimensionless exter-
U.M nal velocity

computed from the
interactive boundary
layer method.

D(NX) D(KX) Product of velocity
Uev __ and displacement
U, c thickness in dimen-

DB(NX) DB(KX) sionless forn, for
the current sweep
(D), from the pre-
vious sweep (DB).
D and DB are printed
in the output as up-
dated values through
the relaxation
procedure

Few(N X) I * '(P 1 x -
U E (NV)

IT ITN(I) Iteration count for
the convergence of
solutions at a given
NX-station.

NP NNP(I) Number of points
across the boundary
layer.

C. HOW TO CHANGE THE ORIGINAL PROGRAM

Cebeci's computer program is written entirely in FORTRAN

and consists of the following eight FORTRAN files:

FILE I FORTRAN Al

FILE 2 FORTRAN Al

FILE 3 FORTRAN Al

FILE 4 FORTRAN Al

FILE 5 FOPTRAN Ai

FILE 6 FORTRAN Al
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FILE 7 FORTRAN Al

FILE 8 FORTRAN Al

FILE 9 FORTRAN Al

Also, the user needs the following six JCL files to run

changed program:

QUEST I JCL Al

ALLPDS jCL Al

QUEST 3 JCL Al

STOPDS JCL Al

LOADMOD JCL Al

INTAPCLG JCL AI

"QUEST 1" lists all data set on MSS (Mass Storage

System) that belong to student user ID

number and in group PUB4B (public disk

volume), which deletes the data set 180

days after creation.

"ALLPDS" allocates space fo- a PDS (partitioned

Data Set) on PUB4B prior to reading a

data set into it, using the utility

program IEFBR 14 which pre-allocates or

deletes data sets.

"QUEST 3" lists the members of a PDS and calculates

the remaining available space within the

data set.

"STOPDS" places a FCRTRAN source file in a PDS.

63



The SYSUT2 DD statement describes the out-

put data set and the SYSUTL DD statement

describes the input data set.

"LOADMOD" creates a load module.

"INTAPCLG" coMpile5 surce. cCcde, loods n ecu-s #textffie.

A list of all JCL files is given at the end of this chapter

and more information is in the User's Guide to MVS at NPS

(1986).

The following is the procedure to change the program

and run it:

Step 1

I. Make charges in FORTRAN files as required. Remember
those eight FORTRAN files compose one program.
Thur,, the user must check all files which are
related to changes.

2. Review and update FORTRAN errors, if necessary.

Step 2

1. Charnge job name "xxxxxx", tiber ID number "nrcnn" d d
library name "yyy" with user's own in all JCL files
to make them be the user's.

2. Submit four JCL files:
"QUEST1" "ALLPDS" "QUEST 3" "LOADMOD".

Step 3

Do the following for all FORTRAN files to submit

them to user's library.

1. Open "STOPDS" JCL file.

2. Change the FORTRAN file number indicated by r on the
sixth line.

//SYSUT2 DD DISP YYYLIB (INTAIR n)
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3. Insert the FORTRAN file between
"//SYSUTl DD, " and "/*"

4. Submit "STOPDS" JCL file.

5. Check the result by any error message at the very
top and bottom part anxd condition code.

6. Update errors, if necessary.

Step 4

Do the following to run the changed program.

. Open "INTAPCL," JCL file.

2. Insert the input data between

"//GO. SYSIN DD " and "/*"'

3. Submit "INTAPCLG" JCL file

From the second change, do steps 1, 3 and 4.

D. APPLICATION OF CEBECI'S PROGRAM

Cebeci's interactive program was applied to a single

airfoil, FX 63 -137, at three Reynolds numbers. The print

flag is 0 and the number of airfoil coordinates is 49 for

all cases. The results are compared with experimental data

and the turbulence model has been changed to get better

results. The experimental results are taken from Reference

9.

Figure 4.2 and 4.3 show the comparison of lift and drag

coefficients for three Reynolds numbers. Drag coefficients

are computed at the trailing edge. It is seen that the

results are closer to the experimental data as the Reynolds

number increases.
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Figures 4.4, 4.5 and 4.6 show the skin friction

coefficients on the upper and lower surfaces as a function

of angle of attack for the same three Reynolds numbers.

Legends indicate the angle of attack. As the Reynolds

number increases, the length of the separation bubble

decreases on both surfaces for the same angle of attack.

Especially, Figure 4.4, which has a different label of

y-axis from the other figures, indicates an unrealistic flow

on the upper surface at low Reynolds number. In Figure 4.5

and 4.6, however, the flow on the upper surface is separated

from about 80% chord at all angles of attack.

Figures 4.7, 4.8 and 4.9 present how the displacement

thickness varies according to the angle of attack and the

Reynolds number. As the Reynolds number increases, the

displacement thickness decreases on both surfaces. As the

angle of attack increases, it also increases on the upper

_rface, but decreases on the lower surface.

Table 4.1 represents the computed and fixed transition

Iocations which are used in Figure- 4.10 4.13. The

computed transition locations XTR IL C.288922 at ALPD = 8

degrees and XTRL = 0.206866 at ALPD '.0 degrees were

printed incorrectly. In this case, the correct transition

locations can be obtained by the fo'.'owing procedure:

Calculate the difference of XTRL'o at AZPD = 4
degrees and 6 degrees.

2. Add the difference to XTRL of ALPD 6 degrees and
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take the result as d temporary XTRL for ALPD =

8 degrees.

3. Fix transition location with the temporary XTRL

4. Run the program to print XC(I), GAMTR(I) from
SUBROUTINE OUTPUT in FILE 3 FORTRAN Al.

5. Take XC(l), where the value of GAMTR(I) is finally
equal to zero, as the correct transition location.

6. From the same procedures with XTRL's at ALPD = 6
degrees and 8 degrees, obtain the correct transition
location for ALPD = 10 degrees.

Figures 4. 10 4. 13 show the effect of variations in the

empirical constant, C~A , in turbulence model at Re = 0.28

6x 10 In the legend of Figures 4.10 and 4.11, the three

numbers are the values of the empirical constant, C means

that The transition location is computed by Eq. (4.1) and F

means that it is fixed. The lift curve is closer to the

experimental data as the empirical constant decreases, but

the drag curve is closest when the empirical constant is

120.

The reason why we can obtain better results by reduciy

the empirical constant is shown in Figure 4.12 and 4.12.

GAMMATR (ftr) is the intermittency factor which is a

function of the x-coordinate with values 0.0 at the

beginning point of transition and 1.0 at the ending point of

transition. The intermittency factor makes it possible to

avoid a sudden transition from laminar to turbulent by

smoothing out the step-shaped change of viscosity from

kinemdtic to eddy. The relation between the empirical
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constant and the intermittency factor is given as:

r -1,3dx
t 1 - exp (x - xfr) Ue Rex, dx

G Y~r fX e ~

where, x.tr denotes the beginning point of transition.

The transition length is mainly determined by the

empirical constant Gy r which is set as 1200 in Cebeci's
i r

original program. Decreasing the value of the empirical

constant reduces the transition length. In this way, the

inrealistic flow shown in Figure 4.4 can be avoided and more

reasonable results, which are closer to the experimental

data, can be obtained. In Figure 4.12 and 4.13, the legend

indicates the angle of attack, and each of four line

patterns is used twice for two angles of attack (e.g.

4 degrees and 4 degrees). The direction of curves, as the

angle of attack increases, is from right to left at the

,pper surface (Figure 4.12) and fro.-. left to right at the

iower surface (Figure 4.13).

68

..- ..



List of jCL File53

SALLPDS JCL Al

//XXXXXX JOB CNIJIJ,9999),'ALLOCATE PDS',CLASS:zA

// EXEC PGM=IEFBRl4
//SYSPRINT DD SYSOUT=A
//DD1 DD UtIT~=3330V,MSVGP=PUB4B.DISP=(tJEW,CArLG,DELETE),

iiSPACE=(CYL. 4', 4,6).)Nr=MSS. SlI~NNYYYL IB

SQIJESTI JCL Al

//XXXXXX JOB CNN!tJN,9999),'QUESTIONI,CLASS=A
//*MAI NI ORG=NPGVMl . tJIJNP
// EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
i'JYS I N DD
L ITDSET GROUPCPUB4B) LEVEL (MSS.SNVlN)

**~QUESTS JCL. Al

//XXXXXX JOB (NNNN,9999),'LIST',CLASS=A
//4MA1IN ORG=NPGVMI .titNNP
// EXEC PGM=lEHLIST
//SYSPRIJT DD SYSOUT=A
//DD1 DO UNIT=333OV,VOL=SER=MS0O05,DISP='SHR

S'YS I N DD
LISTVTOC FORMAT,VOL=3330V=M'0O05.DSN4AMEzMSS. SNN4NN.YYYLIB
LISTPDS V0L=3330V=M50005. DSNAME=MSS.SNNN. YYYLI B

~~ STOPDS JCL Al

i'XXXXXX JOB 0410111,9999), 'PLACE PDS'
//*MAIN ORG=NPGVMI .NNNUP

// EXEC PGrl=IEBGEIJER
//SYSPRINT DD SYSOUT=A
//3)YSIJ DO DUMMY
//SYSUT2 DD DISP:(OLD,KEEP),D NJAME:MSS.SNJNtN.YYYLIB(IN4TAIR _),

DCB=(RECFMzFB, LRECL :80, BLKSIZE:8000)
//SYSUTl DD



~~ LOADMOD JCL Al

//xXXXX JOB (NNtIN,9999),'CREATE LOADMODULE',CLASS=C
//xMAItJ ORGtiJPGVM1 INN11P

I' EXEC FORTVCL ,PARM. FORT='LVL (77), NOS,IIOX, NOMAP'
//FORr.SYSPRINT DD DUMMY
//FORT. SYSIN PD D ISP=SHR, DSN=MSS. SNNNN .YYYL IB( I NTA I Ri

'IDD DISP=SHR,DSN=MSS.S1INI1Nt.YYYLIB(IN4TAIR2)
DD D ISP=SHR, DSN=MSS .51tHifl. YYYL I B( I14T A IR3 )

//DD DISP=SHR, DSfl=MSS. SNrNJ.YYYL IB(I NTrA IR4 )
//DD D I SPSHR, DSN=MSS. StNNN.YYYL IB(I NT A IR6)

DO DD DISP=SHR, DSN=M3S . SIJltJlt.YYYL 18( 1 NTA IR7
DD DISP=SHR, DIJZMSS. SWRINU.YYYLI B( INTIA IR8 )

//DD D ISP='HR, DSN=MSS .SNWIN tYYYL IB( I NTA IR9)
//LKED.SYSLMOD DD DISP=SR,DSNlMSS.StlJJ.YYYLIB(INTCAS)
//LKED.SYSIN DD DSNtIlULLFILE

SINTAPCLG JCL Al

//XXXXXX JOB (NNIN,9999),'COMP LOAD AND GOI,CLASS=G
//*MAIN ORGt4PGVM1 tNN!P

//EXEC FORTVCLG,PARM.FORT'ILVL(77),N4OS,NiOX,NIOMAP',
// REGION.GO=1180K

//FORT.SYSPRINT DD DUMMY
//FORr.SYSIN DO DISP=SHR,DSWlMSS.SNNNNit.YYYLIB(INTAIRl)

//DD DISP=SHR ' DSN=MSS . SNIIN.YYYL IB( INT A IR2 )
//DO D IS PSHR, DSI=MSS-SN141114.YYYL IB(ItITAI R3 )
//DD D ISP=SHR, DStJ=MSS.Sft1J!'N.YYYL IB( I14T A IR4)

DO DD DIS PSHR, DSNMSS. StItNf.YYYLI B(I14T AI R6 )
DD D ISP=SHR, DSNMSS. SlJtIr.YYYL IB( III T AIR7 )

//DD DISP=SHR,DS=MS.St!tJNit.YYYLIB( INTAIRS)
//DO DISP=SHR, DSNi=MSS .SIJNIJIJ .YYYLIB( INTAIR9)

//LKED.SYSPRINT DD DUMMY
//LKED.SYSIN DD DSN=NULLFILE
//GO.FTOIFOO1 DD UNIT=SYSDA,SPACE=(CYL,(l,l))

- "GO.FTO2FO0l DD UtIIT=SYSDA,SPACE=(CYL,(1,l))
/,'GO.FTO3FO0l DD UNIT=SYSDASPACE=(CYL,(1,1))
//GO.FTO4FO0l DD UtNIT=SYSDASPACE=(CYL,(1,1))
,.'GO.FT99F0O1 DD UIIIT=SYSDA,SPACE=(CYL,(1,1))
//GO.FT08FO0l DD UtNIT=SYSDA,SPACE=(CYL,(1,1))
//GO.FTO9FO0l DO UtIIT=SYSDA,SPACE=(CYL,(l,1))
//GO.FT1OFO0l DD UtNIT=SYS)DA,SPACE=(CYL,(l,1))
//GO.FT11F00l DO UtJIT=SY'DA,SPACE=(CYL, (1,1))
//GO.FTO6FOOL DD SYSOUT=A
//GO.SYSIN DOD
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0 0.-I I I')19 0.501232 0.391119 o. 5C)1 :32
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V. CONCLUSIONS

Cebeci's interactive computer program was applied to

the Wortmann-Althaus FX 63-137 airfoil to show the

capability of strong viscous/inviscid interaction methods to

predict airfoil flows at low Reynolds numbers.

From the comparisons with the experimental data, it

was confirmed that the results are closer to the

experimental data as the Reynolds number increases.

Also, much better results were obtained by decreasing
the empirical constant G

,t. .

Therefore, it was concluded that the boundary layer

transition model has an important influence on the

predictive capability of viscous/inviscid interaction

methods.
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